About Gene Editing
Background
Genome editing, or gene editing, is a method that allows scientists to alter the DNA sequence of organisms. This method has multiple applications in our society, including biomedical research and agriculture. In agriculture we can use gene editing to modify and enhance various characteristics of our food by combining or modelling the new DNA off of food that has more desirable characteristics. Another application includes gene editing to aid or enhance biomedical research, by altering the human genome in two ways. The first way an individual’s genome can be altered is within their somatic cells, this altering is commonly referred to as gene therapy. Gene therapy changes the DNA in the somatic cells of an individual with the intent to treat a disease or enhance the individual’s living in some way. Although these changes are permanent they cannot be inherited by offspring, as the alterations are occurring in somatic cells. This form of gene editing is widely supported in the scientific community as a promising treatment for individuals.
The second way that the human genome can be changed is through the modification of germ line cells. This involves changing the DNA of embryos, eggs or sperm before they have develop into an individual. These changes would be inherited in all future generations, regardless to whether the change is beneficial or harmful. There are three potential applications of germ line genome editing(GGE): to cure patients, to avoid the inheritance of gene-linked conditions, and to enhance an embryo for non-medical purposes. Though GGE has the potential to be very helpful it comes with much ethical controversy from the scientific community, and many countries have laws regulating the use of GGE. This brief will give an overview of the most commonly used method of gene editing, CRISPR, and the legal and ethical implications that should be considered when starting a business in GGE.
Methodologies of CRISPR
Genome editing works by acting like scissors. Scientists can go along the DNA, find a specific spot, and then remove, add or replace the DNA where it was cut. There are a multitude of technologies available for gene editing, however CRISPR is currently the most commonly used. CRISPR was designed in 2009 and stands for clustered regularly interspaced palindromic repeats. These repeats are found naturally in bacteria which store information that can help to recognize invading viruses. There are certain enzymes, like a molecule named Cas, that are associated with these repeats that search for a specific DNA sequences and cut precisely at that point. Scientists can adapt these CRISPR-Cas molecules to search for specific DNA sequences in other genomes, such as plants, animals and humans, and cut at those specific points. These molecules can also provide a new DNA sequence for the cell to use when it repairs the cut.
Like any technology, CRISPR can make errors which could have negative effects on the host’s physical expression of the genome. CRISPR sometimes mis-recognizes a DNA sequence that is similar to the one it’s looking for and cuts in the wrong place, resulting in off-target mutations. It may also cut in the right place, but cause mistakes where DNA is incorrectly inserted or deleted.
Legal & Ethical Considerations
Canada is one of few countries in the world with a criminal ban on any form of alteration to human germ line cells. In 2004 the Assisted Human Reproduction Act was put in place, because of public worry of human cloning due to the Human Genome Project, stating that no person shall knowingly […] alter the genome of a cell of a human being or in vitro embryo such that the alteration is capable of being transmitted to descendants. When this ban was put in place there was no distinction or clarification made about how this legislation applied to research, or in a clinical context. However Canadian scientists have not tried to find a loop hole in this legislation because of the heavy sentence it carries. Violators of this offence, if found guilty, are subject to a fine up to $500,000 and/or 10 years in prison.
Other countries have taken a different approach to regulating GGE. The United States, for example, has made the use of genetic engineering techniques to make genetic alterations that can be passed on to future generations illegal. However, scientists are still allowed to conduct research within the field, so long as the experimental embryos never have the chance to become babies. Some countries around the world possess similar bans to the one in Canada, and researchers have still been finding way to do studies. Liang and co-authors have been doing research with GGE on embryos with an extra chromosome, called triple embryos. These embryos could not be carried to term in a pregnancy if they were implanted, meaning there is no risk of babies being born from their research. Additionally their study found a high rate of off-target mutations, however most of these did not result in morally significant harm.
A criminal ban is a suboptimal tool for regulating science for many reasons. Due to the lengthy process in which legislation is made and altered in Canada bans on scientific research can hinder our responsiveness to the continually changing nature of science and societal attitudes. For example, if there were suddenly to be a shift in regulations on GGE, Canadian scientists would be at a disadvantage to other countries would have been allowed to conducted research up until that point. The Law Reform of Canada was a law commission, independent of the government formed to give the Canadian government advice on matters pertaining to law, and it was formed in 1971. In 1982 the Law Reform Commission of Canada stated that criminal law should be “an instrument of last resort used solely for conduct which is culpable, seriously harmful and generally conceived as deserving of punishment”. Canid has also signed several declarations over the years that enforces the right for all Canadian citizens to enjoy the benefits of scientific progress and it’s applications. This begs the question as to whether or not the benefits outweigh the risks in regard to GGE.
130 million babies are born world wide each year, 7 million of those are born with a serious genetic disease that is hereditary. Of this 7 million, approximately 80% of the disorders are caused by single gene mutations. The biggest case for GGE is for parent carriers of these single gene disorders, although it has been argued that in vitro fertilization (IVF) could fix this problem. Although carriers of genetic disease could opt to do IVF, consider this situation. Hypothetically if both parents were carriers for an inherited disease only one in four fertilized eggs would produce an embryo that presents the disease phenotypically. However 19% of women undergoing IVF only produce one viable embryo, and if that one embryo gets two genes for the disease then the parents face the decision of bringing a diseased child into the world, or not having a child at all. GGE would prevent this chance, and therefore that decision from having to be made.
The largest safety and ethical concern associated with genome editing is the off-target mutations that may result from the use of CRISPR-Cas9, the most frequently used editing technology. These off target mutations may cause irreversible changes to the genome that could result in the development of cancer or other pathologies. Not only would these mutations effect the embryo being edited, but possibly all future generations. With any medical procedure there are a number of risks associated, and this risks need to be weighed accordingly.
These risks are not isolated to mistakes in the technology, there are any unknowns about how the technology would impact society. If the criminal ban on GGE is lifted it is quite possible that it would be used as a tool of enhancement, not just preventing disease, which could have a variety of societal repercussions. Not only is it important to consider the preservation of human diversity and individuality, which would likely be compromised. But it is also important to consider how these enhancements will effect future generations. For example, altering or increasing the frequency of certain genes that would be beneficial to the current generation may be harmful to future generations. The question remains, are these risks strong enough to justify prohibiting all forms of GGE?
2020-3-30-1585573469
Topics and themes for your essay:
- The potential of CRISPR technology to revolutionize biomedical research and its potential applications in clinical medicine.
- The ethical implications of using CRISPR technology to edit the human genome.
- The potential implications for global food security as CRISPR technology is used to engineer crop plants.
- The development of CRISPR-based gene therapies for the treatment of genetic diseases.
- The use of CRISPR technology to create designer organisms and the implications for biotechnology and synthetic biology.
- The potential for CRISPR-based gene editing tools to be misused or abused.
- The implications of the use of CRISPR technology on intellectual property rights and the patent system.
- The potential implications of using CRISPR technology to modify animal and plant species.
- The role of regulation in controlling the use of CRISPR technology and its implications for society.
- The implications of CRISPR technology for global health care and access to healthcare.